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Journées Équations aux dérivées partielles
Roscoff, 30 mai–3 juin 2016
GDR 2434 (CNRS)

Curvature induced magnetic bound states:
towards the tunneling effect for the ellipse

Virginie Bonnaillie-Noël Frédéric Hérau Nicolas Raymond

Abstract

This article is devoted to the semiclassical analysis of the magnetic Laplacian on a
smooth domain of the plane carrying Neumann boundary conditions. We provide WKB
expansions of the eigenfunctions when Neumann boundary traps the lowest eigenfunctions
near the points of maximal curvature. We also explain and illustrate a conjecture of magnetic
tunneling when the domain is an ellipse.

1. Introduction

Let Ω be an open, bounded and simply connected domain of R2. We consider the magnetic Lapla-
cian

L~ = (−i~∇+ A)2, (1.1)
with Neumann condition on the boundary, where A(x1, x2) = 1

2 (x2,−x1) is a vector potential
associated with the constant magnetic field B = ∇×A = 1. Here ~ is a small positive parameter.
In the following, we will mainly consider the case when Ω is smooth and we denote |∂Ω| = ` its
perimeter. The operator L~ is the self-adjoint operator associated with the closed quadratic form
defined for ψ ∈ H1(Ω) by

Q~(ψ) =
∫

Ω
|(−i~∇+ A)ψ|2 dx1 dx2.

The aim of this article is to present some recent results about the low lying eigenvalues of L~
and their associated (quasi)modes, especially when there are symmetries and multiple points of
maximal curvature on the boundary, and we will focus on the case of ellipses.

1.1. Semiclassical spectral gap
We are interested in the non-decreasing sequence of the eigenvalues of L~, denoted by λ̄n(~), and
especially in the gap between the first two ones λ̄2(~)− λ̄1(~). The question of estimating the gap
between the magnetic eigenvalues was initially raised in [8] in the case of constant magnetic fields
in two dimensions. Fournais and Helffer have shown the fundamental role of the curvature of the
boundary in the semiclassical expansion of the gap (and improved the previous contribution by
Helffer and Morame [13] where only the first eigenvalue was considered). Let us recall their result.
Theorem 1.1. Let us assume that the algebraic curvature κ of the boundary of ∂Ω has a unique
and non-degenerate maximum (attained at a point of the boundary with curvilinear abscissa 0).
Then, we have the asymptotic expansion

λ̄n(~) = Θ0~− C1κmax~3/2 + (2n− 1)C1Θ1/4
0

√
3k2

2 ~7/4 + o(~7/4), (1.2)

where Θ0 ∈ (0, 1) and C1 > 0 are constants related to the De Gennes operator (see Proposition
3.2) and k2 = −κ′′(0).
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In [17, 7], the authors have estimated the spectral gap in the case of varying magnetic fields
in two dimensions. They have shown that the spectral asymptotics was governed by an effective
magnetic curvature and that a dimensional reduction in the spirit of the famous Born-Oppenheimer
approximation was a key to determine the spectral gap. Note that this gap was also estimated in
[11] (see also [12]) via a Grushin-like reduction or in [19] via a semiclassical Birkhoff normal form.
We refer to the books [9] and [18] where extensive bibliographic references can be found about this
question.

1.2. WKB expansions
The problematics of estimating the semiclassical spectral gap is closely related to WKB construc-
tions. These constructions were already known for the Schrödinger operator with electric potential
(see for instance [14, 6]). Nevertheless, until now, not even an example of such constructions was
provided in the case of pure magnetic fields. This was the aim of our contribution [3] to show,
in a generic and multi-scale framework, that the magnetic eigenfunctions have (complex) WKB
expansions. In [3], we developed a theory in the Born-Oppenheimer spirit to estimate the spectral
gap and ensure the existence of WKB constructions. We will not reproduce in the present paper
this general framework, but only discuss it in the same context as Theorem 1.1. We will explain
formally why the following operator, acting on L2(R/`Z, ds), determines the semiclassical spectral
asymptotics:

Leff
~ = Θ0~ + µ′′(ζ0)

2 (~Ds + γ0 − ζ0~
1
2 + α0~)2 − C1κ(s)~ 3

2 , γ0 = |Ω|
`
, (1.3)

where Ds = −i∂s, ` = |∂Ω|, ζ0 =
√

Θ0 and α0 is a constant related to the De Gennes operator
(see Proposition 3.2 for some properties of the De Gennes operator).

Remark 1.2. The spectral behavior of Leff
~ is well known. If κ has a unique and non-degenerate

maximum, then the first eigenfunctions are localized near this maximum and a local change of
gauge reduces the investigation to

Θ0~ + µ′′(ζ0)
2 ~2D2

s − C1κ(s)~ 3
2 , (1.4)

for which the usual harmonic approximation applies (as well as the WKB constructions). If κ has
two symmetric maxima, such a change of gauge is not allowed since there is, in general, no global
change of gauge to cancel the flux term (there is a phase shift between the two wells, see [16] and
[4]). The symmetry of κ reveals then a global phenomenon.

The following result is a local WKB construction (near the unique maximum of the curvature)
reflecting the formal approximation by the effective operator (1.4). In the statement we will use
the classical tubular coordinates (s, t) near the boundary (see the precise derivation in Section 2
below).

Theorem 1.3 (WKB form, Curvature induced magnetic bound states). There exist an explicit
function Φ = Φ(s) defined in a neighborhood V of (0, 0) such that Re Φ′′(0) > 0, and a sequence of
real numbers (λn,j)j≥0 such that

λ̄n(~) ∼
~→0

~
∑
j≥0

λn,j~
j
4 ,

with λn,0 = Θ0, λn,1 = 0, λn,2 = −C1κmax and λn,3 = (2n− 1)C1Θ1/4
0

√
3k2
2 . Besides there exists

a formal series of smooth functions an ∼
~→0

∑
j≥0 an,j~

j
4 on V such that

(L~ − λ̄n(~))
(

ane−Φ/~
1
4

)
= O (~∞) e−Φ/~

1
4 .

The main term in the Ansatz is in the tensorial form an,0(s, t) = fn,0(s)uζ0(~− 1
2 t). Moreover, for

all n ≥ 1, there exist ~0 > 0 and c > 0 such that for all ~ ∈ (0, ~0), we have

B
(

Θ0~− C1κmax~
3
2 + λn,3~

7
4 , c~

7
4

)
∩ sp (L~) = {λ̄n(~)},

and λ̄n(~) is a simple eigenvalue. Here B(a, ρ) denotes the ball centered at a of radius ρ.
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1.3. Tunneling effect for the ellipse

Considering the effective operator (1.3) and Remark 1.2 lead to the following conjecture in the
case when Ω is an ellipse. We consider

Ω =
{

(x1, x2) ∈ R2 : x
2
1
a2 + x2

2
b2

< 1
}
, a > b > 0, (1.5)

recall that ` = |∂Ω|, k2 = −κ′′(0) and assume that the curvilinear abscissa of (a, 0) is 0.

Conjecture 1.4.

λ̄2(~)− λ̄1(~) ∼
~→0

~
13
8 A 2 5

2C
3
4
1√
π

(k2µ
′′(ζ0))

1
4

(
κ (0)− κ

(
`

4

)) 1
2

×
∣∣∣∣cos

(
`

2

(
γ0

~
− ζ0

~ 1
2

+ α0

))∣∣∣∣ e−S/~
1
4 ,

where

S =

√
2C1

µ′′(ζ0)

∫ `
2

0

√
κ(0)− κ(s) ds,

A = exp

−∫
[0, `4 ]

∂s
√
κ(0)− κ(s)−

√
k2
2√

κ(0)− κ(s)
ds

 .

1.4. Organization of the paper

The paper is organized as follows. Section 2 is devoted to the change of coordinates and the
corresponding change of operator defined in a tubular neighborhood of the boundary. In Section
3 we recall some well-known facts about the De Gennes operator and apply the result to build an
effective operator according to the Born Oppenheimer strategy. In Section 4, we state the main
steps of the proof of Theorem 1.3. In Section 5, we recall known results about Schrödinger operators
on the circle and apply it to our effective operator, leading to a conjecture about the tunnelling
effect for the ellipse. In Section 6, we present numerical simulations illustrating the conjecture.

2. A global change of coordinates near the boundary

In this short section we recall the reduction of operator L~ to a multiscale operator defined in a
neighborhood of the boundary of Ω. We first write the magnetic Laplacian using tubular coordi-
nates near the boundary.
For t0 > 0 sufficiently small but fixed, let us consider the following smooth neighborhood of ∂Ω:

Ωt0 = {x ∈ Ω, dist(x, ∂Ω) < t0},

and L(t0)
~ the realization of (−i~∇+ A)2 with Neumann condition on ∂Ω and Dirichlet condition

on {x ∈ Ω, dist(x, ∂Ω) = t0}. Using [9, Appendix F], we can rewrite this operator using boundary
coordinates. Let γ : R/`Z→ ∂Ω be a parametrization of the boundary with |γ′| = 1, and for any
s, ν(s) be the inward unit vector at γ(s). The curvature is denoted by κ(s) and satisfies

γ′′(s) = κ(s)ν(s).

Let us consider the diffeomorphism

F : R/`Z → Ωt0
(s, t) 7→ γ(s) + tν(s).

In these new coordinates, the magnetic potential is

Ã(s, t) =
(

(1− tκ(s))A(F(s, t)) · γ′(s)
A(F(s, t)) · ν(s)

)
. (2.1)
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From [9, Lemma F.1.1], there exists a gauge function ϕ (corresponding to a unitary transformation)
such that the magnetic potential reads

Â(s, t) = Ã(s, t)−∇ϕ(s, t) =
(
γ0 − t+ t2

2 κ(s)
0

)
, (2.2)

with
γ0 = 1

`

∫
Ω

curl A(x1, x2) dx1 dx2. (2.3)

We have then (see [9, Lemma F.1.1])

Lemma 2.1. The operator L(t0)
~ is unitarily equivalent to the following operator L̃(t0)

~ acting
on L2(R/`Z × (0, t0),m(s, t) dsdt) with Neumann condition on the outer boundary {t = 0} and
Dirichlet condition on the inner boundary {t = t0}:

L̃(t0)
~ = m(s, t)−1~Dtm(s, t)~Dt

+m(s, t)−1
(
~Ds + γ0 − t+ t2

2 κ(s)
)
m(s, t)−1

(
~Ds + γ0 − t+ t2

2 κ(s)
)
, (2.4)

where Ds = −i∂s and Dt = −i∂t and m(s, t) = 1− tκ(s).

Remark 2.2. Notice that we consider Dirichlet conditions on {t = t0} and the eigenfunctions of
L̃(t0)
~ are exponentially localized near the boundary {t = 0} (see e.g. [9]). Then, in some sense,

theses eigenfunctions do not see the inner boundary {t = t0}.

In the last step, not completely disconnected with this remark, we perform a last change of
variables and also consider a new small parameter

h = ~
1
2 , (s, t) = (σ, hτ). (2.5)

With this change of variable, we have σ ∈ R/`Z and τ ∈ Ih =
(
0, t0h

)
. The operator L̃(t0)

~ is thus
unitarily equivalent to operator h2Lh where

Lh = m(σ, hτ)−1Dτm(σ, hτ)Dτ

+m(σ, hτ)−1
(
hDσ + γ0

h
− τ + h

τ2

2 κ(σ)
)
m(σ, hτ)−1

(
hDσ + γ0

h
− τ + h

τ2

2 κ(σ)
)
, (2.6)

and acting on the space L2(R/`Z× Ih,m(σ, hτ) dσ dτ) with Neumann conditions on the boundary
τ = 0, Dirichlet conditions on the boundary τ = t0/h, and where m(σ, hτ) = 1 − hτκ(σ). With
this expression, the multi-scale behavior is clear since only variable σ seems to have a semiclassical
behavior. In the following we shall focus on this operator using a Born-Oppenheimer strategy.

3. Formal analysis of the operator symbol

In order to understand Theorem 1.3 and Conjecture 1.4, let us formally describe the mechanism
responsible for the WKB constructions.

3.1. De Gennes operator

Before analyzing the spectral properties of Lh, let us recall fundamental properties of the De
Gennes operator. For ζ ∈ R, let us introduce the so-called De Gennes differential operator

Hζ = D2
τ + (τ − ζ)2.

defined on L2(R+) with Neumann conditions on the boundary. We denote by µ(ζ) the first eigen-
value of this operator and by uζ a corresponding positive L2-normalized eigenfunction. The be-
havior of µ is well known (see, for example, [5], [9, Chapter 3] and [2] for numerical estimates and
illustrations). We gather some of its important properties in the following proposition.
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Proposition 3.1. The functions ζ 7→ µ(ζ) and ζ 7→ uζ are real analytic with respect to ζ. There
exists ζ0 > 0 such that µ is decreasing on (−∞, ζ0) and increasing on (ζ0,+∞), and we have

Θ0 := µ(ζ0) = ζ2
0 , µ′(ζ0) = 0, |uζ0(0)|2 = µ′′(ζ0)

2ζ0
.

This is clear from the definition that∫ ∞
0

(|u′ζ(τ)|2 + (τ − ζ)2|uζ(τ)|2) dτ = µ(ζ).

In fact, we can compute explicitly each term inside the preceding integral and for the second one
we recognize a moment of order two. Let us define momenta of the function uζ as follows

Mk(ζ) =
∫ ∞

0
(τ − ζ)k|uζ(τ)|2 dτ, ∀k ∈ N. (3.1)

These moments are calculated in [1] and their expressions are useful to obtain some Feynman-
Hellmann type formulas (see, for example, [9, p. 37], [8, p. 10–p. 62]) given in the next proposition

Proposition 3.2. We have∫
R+

(ζ0 − τ)u2
ζ0

(τ) dτ = 0, (3.2)∫
R+

(∂ζu)ζ0
(τ)uζ0(τ) dτ = 0, (3.3)

2
∫
R+

(ζ0 − τ) (∂ζu)ζ0
(τ)uζ0(τ) dτ = µ′′(ζ0)

2 − 1, (3.4)∫
R+

(
∂τ + 2τ(ζ0 − τ)2 + τ2(ζ0 − τ)

)
uζ0uζ0 dτ = −C1, (3.5)

where

C1 =
u2
ζ0

(0)
3 .

Remark 3.3. Using the real analyticity of eigenfuntions and eigenvalues of the De Gennes oper-
ator, we directly get that there exists C2 ∈ R such that, for all ζ ∈ R,∫

R+

(
∂τ + 2τ(ζ − τ)2 + τ2(ζ − τ)

)
uζuζ dτ = −C1 + C2(ζ − ζ0) +O

(
(ζ − ζ0)2) . (3.6)

Mention that using the exact expression of the moments in (3.1) and the induced exact expression
of the last integral, it is possible to compute explicitly the constant C2 in terms of uζ , µ(ζ) and
their derivatives up to order at most 2 evaluated at ζ0.

3.2. The operator symbol and its lowest eigenvalue

The operator Lh defined in (2.6) can be seen as an operator valued operator. Its semiclassical
operator symbol in obtained by replacing hDσ + γ0

h by ζ and using symbolic calculus. Up to
an O(h2) error term (which is nevertheless an unbounded operator), the semiclassical operator
symbol is given by the following one dimensional operator in the τ -variable, with parameters
ζ ∈ R, σ ∈ R/`Z, τ ∈ Ih,

Hσ,ζ,h = −m(σ, hτ)−1∂τm(σ, hτ)∂τ

+m(σ, hτ)−1
(
ζ − τ + h

τ2

2 κ(σ)
)
m(σ, hτ)−1

(
ζ − τ + h

τ2

2 κ(σ)
)

+O(h2). (3.7)

We will study this operator thanks to the De Gennes operator and the Feynman-Hellmann formulas
recalled previously. We first compute the asymptotic expansion of operator Hσ,ζ,h as h→ 0. Since
m(σ, hτ) = 1− hτκ(σ), we have for σ ∈ R/`Z, τ ∈ Ih,

m(σ, hτ)−1 = 1 + hτκ(σ) +O(h2).

III–5



According to Remark 2.2 and since Ih → R+ as h→ 0, we consider from now (σ, τ) ∈ R/`Z×R+
and replace everywhere m(σ, hτ)−1 by 1−hτκ(σ) +O(h2), supposed to be defined on R/`Z×R+.
We therefore get the following expression of Hσ,ζ,h for σ ∈ R/`Z and τ ∈ R+,

Hσ,ζ,h = −
(
1 + hτκ(σ) +O(h2)

)
∂τ (1− hτκ(σ)) ∂τ

+
(
1 + hτκ(σ) +O(h2)

)2(
ζ − τ + h

τ2

2 κ(σ)
)2

+O(h2).

We deduce that

Hσ,ζ,h = Hζ + hκ(σ)
(
∂τ + 2τ(ζ − τ)2 + τ2(ζ − τ)

)
+O(h2). (3.8)

We can prove that the lowest eigenvalue of operator Hσ,ζ,h is simple and isolated. We denote this
eigenvalue ν(σ, ζ, h). Let us follow the Born-Oppenheimer strategy and compute for each σ ∈ R/`Z
and ζ ∈ R the integral, as h→ 0,∫ ∞

0
Hσ,ζ,huζ(τ)uζ(τ) dτ

=
∫ ∞

0
Hζuζ(τ)uζ(τ) dτ + hκ(σ)

∫ ∞
0

(
∂τ + 2τ(ζ − τ)2 + τ2(ζ − τ)

)
uζ(τ)uζ(τ) dτ +O(h2).

(3.9)

We study each term of this expression. Using formula (3.6) we first write, as h→ 0 and ζ → ζ0,

hκ(σ)
∫ ∞

0

(
∂τ + 2τ(ζ − τ)2 + τ2(ζ − τ)

)
uζ(τ)uζ(τ) dτ

= −C1hκ(σ) + C2hκ(σ)(ζ − ζ0) +O(h(ζ − ζ0)2).

Let us recall that eigenfunctions are localized near point of maximal curvature κmax. One of them
corresponds to σ = 0 and we focus in a first time on this one. By a Taylor formula for κ at σ = 0,
we write, as h→ 0, σ → 0 and ζ → ζ0,

hκ(σ)
∫ ∞

0

(
∂τ + 2τ(ζ − τ)2 + τ2(ζ − τ)

)
uζ(τ)uζ(τ) dτ

= −C1hκ(σ) + C2hκmax(ζ − ζ0) +O(hσ2(ζ − ζ0)) +O(h(ζ − ζ0)2).

From Proposition 3.1, the infimum of µ is reached for ζ = ζ0 and µ(ζ0) = Θ0. Using the definition
of µ(ζ) and its Taylor expansion at ζ0, we get, as ζ → ζ0,∫ ∞

0
Hζuζ(τ)uζ(τ) dτ = µ(ζ) = Θ0 + µ′′(ζ0)

2 (ζ − ζ0)2 +O((ζ − ζ0)3).

Putting these two expressions in (3.9), we get, as h→ 0, σ → 0 and ζ → ζ0,∫ ∞
0
Hσ,ζ,huζ(τ)uζ(τ) dτ = Θ0 + µ′′(ζ0)

2 (ζ − ζ0)2 − C1hκ(σ) + C2hκmax(ζ − ζ0)

+O(h2) +O(hσ2(ζ − ζ0)) +O(h(ζ − ζ0)2) +O((ζ − ζ0)3)

= Θ0 + µ′′(ζ0)
2 (ζ − ζ0 + α0h)2 − C1hκ(σ)

+O(h2) +O(hσ2(ζ − ζ0)) +O(h(ζ − ζ0)2) +O((ζ − ζ0)3),

where α0 is defined by µ′′(ζ0)α0 = C2κmax.
Let us now define M = {σ1, σ2, · · · , σN} the set of all curvilinear abcissa where the maximal
curvature κmax is attained (we can suppose for example that σ1 = 0). The preceding asymptotics
remain true with σ → 0 replaced by dist(σ,M) → 0, where dist(σ,M) stands for the curvilinear
distance between σ and the setM.
Therefore, at a formal level, and coming back to operators in variable σ, one expects that the low
lying spectrum of the operator Lh should be asymptotically the same as the one of

Leff
h = Θ0 + µ′′(ζ0)

2

(
hDσ + γ0

h
− ζ0 + α0h

)2
− C1κ(σ)h, (3.10)
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acting on L2(R/`Z, dσ), and up to operators with symbol

O
(
h2), O

(
h
(
dist(σ,M)

)2(ζ − ζ0)
)
, O

(
h(ζ − ζ0)2) and O

(
(ζ − ζ0)3).

The operator defined in (3.10) appears to be a magnetic Schrödinger operator with a smooth
potential on R/`Z. After rescaling, we get the effective operator (1.3).

4. WKB constructions in the simple well case

Let us now explain the main steps in the proof of Theorem 1.3. In fact it is a direct consequence
of the change of variables (2.5) and of the following result from [3] on the rescaled operator Lh
defined in (2.6). We denote λn(h) the n-th eigenvalue of Lh.

Theorem 4.1. There exist a function

Φ : σ 7→ Φ(σ) =
(

2C1

µ′′(ζ0)

)1/2 ∣∣∣∣∫ σ

0
(κ(0)− κ(ς))1/2 dς

∣∣∣∣ ,
defined in a neighborhood V of (0, 0) such that Re Φ′′(0) > 0, and a sequence of real numbers
(λn,j)j≥0 such that

λn(h) ∼
h→0

∑
j≥0

λn,jh
j
2 .

Besides there exists a formal series of smooth functions on V,

an ∼
h→0

∑
j≥0

an,jh
j
2

such that

(Lh − λn(~))
(
ane−Φ/h

1
2

)
= O (h∞) e−Φ/h

1
2 .

We also have that λn,0 = Θ0, λn,1 = 0, λn,2 = −C1κmax and λn,3 = (2n − 1)C1Θ1/4
0

√
3k2
2 . The

main term in the Ansatz is in the form

an,0(σ, τ) = fn,0(σ)uζ0(τ).

Moreover, for all n ≥ 1, there exist h0 > 0, c > 0 such that for all h ∈ (0, h0), we have

B
(
λn,0 + λn,2h+ λn,3h

3
2 , ch

3
2

)
∩ sp (Lh) = {λn(h)},

and λn(h) is a simple eigenvalue.

Sketch of proof. Let us give some elements of proof based on [3]. Let us introduce a phase
function Φ = Φ(σ) defined in a neighborhood of σ = 0 which is the unique and non degenerate
maximum of the curvature κ = κ(0). We consider the conjugate operator

Lwg
h = eΦ(σ)/h

1
2 Lhe−Φ(σ)/h

1
2 .

As usual, we look for

a ∼
∑
j≥0

h
j
2 aj , λ ∼

∑
j≥0

λjh
j
2 ,

such that, in the sense of formal series we have

Lwg
h a ∼ λa.

We may write
Lwg
h ∼ L0 + h

1
2 L1 + hL2 + h

3
2 L3 + . . . ,
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where
L0 = D2

τ + (ζ0 − τ)2,

L1 = 2(ζ0 − τ)iΦ′(σ),

L2 = κ(σ)∂τ + 2
(
Dσ + κ(σ)τ

2

2

)
(ζ0 − τ)− Φ′(σ)2 + 2κ(σ)(ζ0 − τ)2τ,

L3 =
(
Dσ + κ(σ)τ

2

2

)
(iΦ′(σ)) + (iΦ′(σ))

(
Dσ + κ(σ)τ

2

2

)
+ 4iΦ′(σ)τκ(σ)(ζ0 − τ).

Let us now solve the formal system.

I The first equation is
L0a0 = λ0a0,

and leads to take
λ0 = Θ0, a0(σ, τ) = f0(σ)uζ0(τ),

where f0 has to be determined.

I The second equation is
(L0 − λ0)a1 = (λ1 − L1)a0 = (λ1 − 2(ζ0 − τ)iΦ′(σ))uζ0(τ)f0(σ).

Due to the Fredholm alternative, we must take λ1 = 0 and
a1(σ, τ) = iΦ′(σ)f0(σ) (∂ζu)ζ0

(τ) + f1(σ)uζ0(τ),

where f1 is to be determined in a next step.

I Then the third equation is
(L0 − λ0)a2 = (λ2 − L2)a0 − L1a1.

Let us explicitly write the right hand side. It equals

λ2uζ0f0 + Φ′2(uζ0 + 2(ζ0 − τ)(∂ζu)ζ0)f0 − 2(ζ0 − τ)uζ0(iΦ′f1 − i∂σf0)
+ κ(σ)f0(∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0).

Therefore the equation becomes

(L0 − λ0)ã2 = λ2uζ0f0 + µ′′(ζ0)
2 Φ′2uζ0f0 + κf0(−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0),

where
ã2 = a2 − (∂ζu)ζ0(iΦ′f1 − i∂σf0) + 1

2 (∂2
ζu)ζ0Φ′2f0.

We now use Proposition 3.2 and get the equation

λ2 + µ′′(ζ0)
2 Φ′2(σ) + C1κ(σ) = 0, with C1 =

u2
ζ0

(0)
3 .

Here we recognize an eikonal equation of a pure electric problem in dimension one whose potential
is given by the curvature. Thus we take

λ2 = −C1κ(0),
and

Φ(σ) =
(

2C1

µ′′(ζ0)

)1/2 ∣∣∣∣∫ σ

0
(κ(0)− κ(ς))1/2 dς

∣∣∣∣ .
In particular we have

Φ′′(0) =
(
k2C1

µ′′(ζ0)

)1/2
, with k2 = −κ′′(0) > 0.

This leads to take
a2 = f0â2 + (∂ζu)ζ0(iΦ′f1 − i∂σf0)− 1

2 (∂2
ηu)ζ0Φ′2f0 + f2uζ0 ,
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where â2 is the unique solution, orthogonal to uζ0 for all σ, of

(L0 − λ0)â2 = λ2uζ0 + µ′′(ζ0)
2 Φ′2uζ0 + κ

(
−∂τuζ0 − 2(ζ0 − τ)2τuζ0 − τ2(ζ0 − τ)uζ0

)
,

and f2 has to be determined.

I Finally we must solve the fourth equation given by

(L0 − λ0)a3 = (λ3 − L3)a0 + (λ2 − L2)a1 − L1a2.

The Fredholm condition provides the following equation in the variable σ

〈L3a0 + (L2 − λ2)a1 + L1a2, uζ0〉L2(R+, dτ) = λ3f0.

Using the previous steps of the construction, it is not very difficult to see that this equation does
not involve f1 and f2 (due to the choice of Φ and λ2 and Feynman-Hellmann formulas). Using the
same formulas, we may write it in the form

µ′′(ζ0)
2 (Φ′(σ)∂σ + ∂σΦ′(σ)) f0 + F (σ)f0 = λ3f0, (4.1)

where F is a smooth function which vanishes at σ = 0. Therefore the linearized equation at σ = 0
is given by

Φ′′(0)µ
′′(ζ0)
2 (σ∂σ + ∂σσ) f0 = λ3f0.

We recall that
µ′′(ζ0)

2 = 3C1Θ1/2
0 ,

so that the linearized equation becomes

C1Θ1/4
0

√
3k2

2 (σ∂σ + ∂σσ) f0 = λ3f0.

We have to choose λ3 in the spectrum of this transport equation, which is given by the set{
(2n− 1)C1Θ1/4

0

√
3k2

2 , n ≥ 1
}
.

If λ3 belongs to this set, we may solve locally the transport equation (4.1) and thus find f0.

This procedure can be continued at any order.
To deduce Theorem 1.3, it is enough to notice that λ̄n(~) = h2λn(h) and to take an(s, t) = an(σ, τ).

5. About the conjecture

Let us finally discuss Conjecture 1.4. As suggested by our formal effective operator (3.10), we first
recall a result of tunneling type on a circle from [4].

Let us consider the self-adjoint realization, denotedPε, of the electro-magnetic Laplacian (εDx+
a(x))2 + V (x) on L2

2π−per(R, dx) where the vector potential a and the electric potential V are
smooth, 2π-periodic functions. By a gauge transform, this operator is unitarily equivalent to the
following operator

Pε = (εDx + ξ0)2 + V (x),
with ξ0 =

∫ π
−π a(x) dx.

This type of operator is widely studied in (quasi-)periodic situations, and is one of the stone of
the so-called Floquet approach for the corresponding problems. Here we only need to deal with it
in the pure periodic case. In [4], we have established an asymptotic result of the splitting between
the first two eigenvalues ρ1(ε) and ρ2(ε) of Pε or Pε, when the potential V has two symmetric
and non-degenerate wells.
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Theorem 5.1. Assume that the function V admits exactly two non-degenerate minima at 0 and
π with V (0) = V (π) = 0 and satisfies V (x) = V (π − x) = V (−x). We let

V2 =
√
V ′′(0)

2 . (5.1)

Then, as soon as ε is small enough, there are only two eigenvalues of Pε in the interval (−∞, 2κε)
and they both satisfy

for j = 1, 2, ρj(ε) = V2ε+ o(ε) as ε→ 0.
Let us define the positive Agmon distance and the constant A by

S =
∫

[0,π]

√
V (x) dx, and A = exp

(
−
∫

[0,π2 ]

∂x
√
V − V2√
V

dx
)
. (5.2)

Then we have the spectral gap estimate

ρ2(ε)− ρ1(ε) = 8ε1/2A
√
V
(π

2

)√V2

π

∣∣∣∣cos
(
ξ0π

ε

)∣∣∣∣ e−S/ε + ε3/2O
(

e−S/ε
)
. (5.3)

Note here that this type of result appears in [16] and in [4] where we give its detailed proof
in dimension 1. The main point is that one can see on the previous formula the global topologic
effect of the flux ξ0.

We now apply the previous result to our effective operator Leff
~ defined in (1.3) which is of the

same nature. After a shift by Θ0~−C1κ(0)~ 3
2 and the rescaling s = `

2πx, the operator L
eff
~ becomes

the following operator acting on L2(R/2πZ),
µ′′(ζ0)

2 ~
3
2

[
(εDx + ξ0)2 + V (x)

]
,

where

ε = 2π~ 1
4

`
, ξ0 = γ0

~ 3
4
− ζ0

~ 1
4

+ α0~
1
4 , V (x) = 2C1

µ′′(ζ0)

(
κ (0)− κ

(
`x

2π

))
.

Using Theorem 5.1, we directly get

Proposition 5.2. The spectral gap of the effective operator Leff
h is given by

λ̄eff
2 (~)− λ̄eff

1 (~) ∼
~→0

~
13
8 A 2 5

2C
3
4
1√
π
|κ′′(0)µ′′(ζ0)|

1
4

(
κ (0)− κ

(
`

4

)) 1
2

×
∣∣∣∣cos

(
`

2

(
γ0

~
− ζ0

~ 1
2

+ α0

))∣∣∣∣e−S/~
1
4 ,

where

S =

√
2C1

µ′′(ζ0)

∫ `
2

0

√
κ(0)− κ(s) ds,

A = exp

−∫
[0, `4 ]

∂s
√
κ(0)− κ(s)−

√
−κ

′′(0)
2√

κ(0)− κ(s)
ds

 .

Conjecture 1.4 says that the spectral gap for the initial problem L~ is the same as the one
of the effective operator Leff

~ . Of course, many approximations have been done in the previous
analysis. In particular, reductions, asymptotic expansions and symbolic computations were done
up to O(h2), O(h

(
dist(σ,M))2(ζ − ζ0)

)
, O(h(ζ − ζ0)2) or O((ζ − ζ0)3) errors (recall that M is

the set of curvilinear abcissa corresponding to maximal curvature, and note thatM = {0, `/2} in
the case of the ellipse). This can seem contradictory with the exponentially small effect stated in
the conjecture. Such a situation was recently tackled in the context of the Robin Laplacian in [10]
where it is proved that, though the effective operator is obtained modulo remainders polynomial
in h, it governs the tunneling effect thanks to an asymptotic separation of variables. Anyway, as
e.g. in the usual study of tunneling in multiple well situations, the eigenvalues themselves may be
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known with (relatively) rough precision (say O(hN )) whereas the gap is very refined. Perhaps in
Conjecture 1.4 some global constants are only approximated since the exact phase of operator L~
is not the same as the (explicit) one of the effective operator. This is the subject of a current work
in progress.

6. Numerical simulations

The numerical simulations of the spectral gap have been done for the operator L~ defined in (1.1)
in the case of the ellipse Ω defined in (1.5) with a = 2 and b = 1.
We compute the eigenvalues of L~ with a finite element method (see [15]) with an approximation
of degree Q32 on an isoparametric mesh of Ω with 80 quadrangular elements. Figure 6.1 illustrates
the convergence of the first two eigenvalues and also the expansion (1.2). In these simulations, we
take ~ ∈ {k/10000, 1 ≤ k ≤ 100}. Figure 6.1(a) plots λ̄1(~)/~ and λ̄2(~)/~ according to 1/~ and
Figure 6.1(b) represents the difference between the eigenvalues and the main term of the expansion
(1.2):

1
~
7→ λ̄j(~)

~
−Θ0 + C1κmax~1/2. (6.1)

5 10 15 20 25 30 35 40 45 50
0.45
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0.47

0.48
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0.5

0.51

0.52

0.53

0.54

0.55

(a) λ̄j(~)/~ vs. 1/~
10 20 30 40 50 60 70 80 90 100

0.02

0.03

0.04

0.05

0.06

0.07

(b) λ̄j(~)/~ − Θ0 + C1κmax~1/2 vs. 1/~

Figure 6.1: Behavior of the first two eigenvalues vs. 1/~

Now we will illustrate the tunneling effect and especially Conjecture 1.4 with both the exponen-
tial decay and the oscillation between the first two eigenvalues. Thus we have to compute the
parameters in Conjecture 1.4. Using the formulas for the ellipse, we have in our situation

|Ω| = πab ' 6.283,

` = 4
∫ π/2

0

√
a2 cos2 t+ b2 sin2 tdt ' 9.688,

e =
√

1− b2

a2 =
√

3
2 ,

where e denotes the eccentricity. Note that here and in the following, we use a simple composite
rectangular rule to compute numerically the integral.
Since we choose a constant magnetic field curl A = 1, γ0 defined in (2.3) equals |Ω|/`.
The curvilinear parametrization of ∂Ω and the curvature are then given, for s ∈ [0, `], by

γ(s) =
(
a cos

(
2πs
`

)
, b sin

(
2πs
`

))
,

κ(s) = b

a2

(
1− e2 cos2

(
2πs
`

))−3/2
= 1

4

(
1− 3

4 cos2
(

2πs
`

))−3/2
.
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The maximum of the curvature is then given by κmax = κ(0) = 2 and κ(`/4) = 1/4. We have

S =

√
2C1

µ′′(ζ0)
`

2π

√
b

a

∫ π

0

√
(1− e2)−3/2 − (1− e2 cos2 s)−3/2 ds ' 3.357.

In Figure 6.2, we represent the difference between the first two eigenvalues λ̄2(~)− λ̄1(~) (in blue)

20 25 30 35 40 45

1/h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
×10

-4

Figure 6.2: Tunneling effect for the ellipse : λ̄2(~)− λ̄(~) and δ(~) vs. 1/~

and its conjectured behavior (in pink)

δ(~) = c~
13
8

∣∣∣∣cos
(
`

2

(
γ0

~
− ζ0

~ 1
2

+ α

))∣∣∣∣e−S/~
1
4 ,

with suitable parameters c and α. We observe that our numerical simulations are perfectly coherent
with the conjecture.

References

[1] A. Bernoff and P. Sternberg. Onset of superconductivity in decreasing fields for general do-
mains. J. Math. Phys., 39(3):1272–1284, 1998.

[2] V. Bonnaillie-Noël. Harmonic oscillators with Neumann condition of the half-line. Commun.
Pure Appl. Anal., 11(6):2221–2237, 2012.

[3] V. Bonnaillie-Noël, F. Hérau, and N. Raymond. Magnetic WKB constructions. Arch. Ration.
Mech. Anal., 221(2):817–891, 2016.

[4] V. Bonnaillie-Noël, F. Hérau, and N. Raymond. Semiclassical tunneling and magnetic flux
effects on the circle. J. Spectr. Theory, page to appear, 2017.

[5] M. Dauge and B. Helffer. Eigenvalues variation. I. Neumann problem for Sturm-Liouville
operators. J. Differential Equations, 104(2):243–262, 1993.

[6] M. Dimassi and J. Sjöstrand. Spectral asymptotics in the semi-classical limit, volume 268 of
London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
1999.

III–12



[7] N. Dombrowski and N. Raymond. Semiclassical analysis with vanishing magnetic fields. J.
Spectr. Theory, 3(3):423–464, 2013.

[8] S. Fournais and B. Helffer. Accurate eigenvalue asymptotics for the magnetic Neumann Lapla-
cian. Ann. Inst. Fourier (Grenoble), 56(1):1–67, 2006.

[9] S. Fournais and B. Helffer. Spectral methods in surface superconductivity. Progress in Nonlinear
Differential Equations and their Applications, 77. Birkhäuser Boston Inc., Boston, MA, 2010.

[10] B. Helffer, A. Kachmar, and N. Raymond. Tunneling for the Robin Laplacian in smooth planar
domains. To appear in Commun. Contempt. Math. (arXiv:1509.03986), 2016.

[11] B. Helffer and Y. A. Kordyukov. Semiclassical spectral asymptotics for a two-dimensional
magnetic Schrödinger operator: the case of discrete wells. In Spectral theory and geometric
analysis, volume 535 of Contemp. Math., pages 55–78. Amer. Math. Soc., Providence, RI,
2011.

[12] B. Helffer and Y. A. Kordyukov. Accurate semiclassical spectral asymptotics for a two-
dimensional magnetic Schrödinger operator. Ann. Henri Poincaré, 16(7):1651–1688, 2015.

[13] B. Helffer and A. Morame. Magnetic bottles in connection with superconductivity. J. Funct.
Anal., 185(2):604–680, 2001.

[14] B. Helffer and J. Sjöstrand. Multiple wells in the semiclassical limit. I. Comm. Partial Differ-
ential Equations, 9(4):337–408, 1984.

[15] D. Martin. Mélina, bibliothèque de calculs éléments finis. http://anum-maths.univ-
rennes1.fr/melina, 2010.

[16] A. Outassourt. Comportement semi-classique pour l’opérateur de Schrödinger à potentiel
périodique. J. Funct. Anal., 72(1):65–93, 1987.

[17] N. Raymond. From the Laplacian with variable magnetic field to the electric Laplacian in the
semiclassical limit. Anal. PDE, 6(6):1289–1326, 2013.

[18] N. Raymond. Bound states of the Magnetic Schrödinger Operator, volume 27 of EMS Tracts
in Mathematics. European Mathematical Society, 2017.
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