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An Effective Solution

of a Certain Diophantine Problem.

U. ZANNIER (*)

Introduction.

Consider the following diophantine question:

Let f(X, Y) E K[X, Y], where K is a number field with ring of inte-
gers D. Determine the set ,S = Sf = Sf, K = I mE D : f(m, Y) splits into
linear factors over K ~. 

’

A celebrated theorem of Siegel immediately implies that, if the

splitting field £ of f over K(X ) has positive genus, then S is finite. Actu-
ally, even if no effective version of the general Siegel’s theorem is
known at present, it follows from work of Belotserkovski [3] that one
can effectively determine S (which is essentially equivalent to an effec-
tive Siegel’s theorem on the integral points of a Galois covering of the
projective line. See also the Appendix in [5] for a proof). The purpose of
this brief note is to complete such analysis with an effective description
of ,S in the easier case when 2: has genus zero. We remark that Siegel
himself gave a good description of the integral points for the general
equation of genus zero, which moreover can now be made effective.
Nevertheless some additional information, compared to the general
case, is gained by looking at the above question.
We may clearly assume f to be irreducible over K. Let d * = degyf

Define K as the algebraic closure of K in ~, G as the Galois group of 2:
over k(X) and let d be the order of G. We shall prove the follow-
ing

(*) Indirizzo dell’A.: D.S.T.R., S. Croce 191, 30135 Venezia (Italy).
E-mail: zannier@udmi5400.cineca.it.
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THEOREM. Assume has genus zero. Then one may deter-
mine whether S is finite (in which case its elements may be found), or
not. If not, then k = K and G is cyclic or dihedral according as X has
one or two poles in 1;. In the first case K contains a primitive d-th root
of unity. Otherwise a primitive (d/2)-th root of 1 is either in K or

quadratic over K. Moreover there are computable explicit parametric
formulae for the elements of ,S (given by (5), (8), ( 11 ) below).

In the proof we shall use the fact that, given a curve C defined over
K, of genus 0, it is effectively possible to establish whether there exists
a K-rational point (1) on it (by Hasse principle for instance) and, in the
affirmative case, to produce one such point. Even if this is well known,
for the sake of completeness we recall very briefly one possible method.
For a a divisor, let V(a) be the vector space of rational functions f such
that div ( f ) ~ a. The divisor 8 of a nonzero K-rational differential on the
curve is of degree - 2, so, by Riemann-Roch, V(a) has dimension 3. Let
f, g, h) be a basis for V(e) (Coates algorithm-see [4]-guarantees the
effectivity of such procedure). Then the functions g 2 , gh, h 2
lie in V(2~) which, by Riemann-Roch again, has dimension 5. A non-
trivial linear relation among such six functions gives a model for C as a
conic in p2 which, after a change of variables, may be assumed to be of
the form Y’ - aX2 = cZ~ where a, c E K * (2). Rational points thus give
nontrivial solutions in D of such equation and exist iff c is a relative
norm from K(yfa) to K. (We may exclude the trivial case a E K*2.)

Take any nontrivial solution (X, Y, Z) E D 3. It is easy to see (using
the finiteness of the class number) that the greatest common ideal divi-
sor of X, Y may be assumed to divide a fixed ideal.

Consider then the ideal factorization of Y + xyfa in the ring of inte-
gers of By the above remark ( Y + = IJ2 where I is an
ideal in a finite set depending on c. Choose an ideal J * in the class of J
and having bounded absolute norm. Then, set (Y* + X * ~) = IJ *2,
(t) = J -1 J *. We have that IJ *2 has bounded absolute norm, whence
Y* , X* may be chosen to have bounded height, while t E Also,

as fractional ideals, whence Y* +

+ X* ( Y + where g is a unit from a finite set (in fact, the
group of units is finitely generated, and the squares of units may be ab-
sorbed in t *2). Taking norms N from to K we get N((Y* +
+ X * = cU2, where U = ZN(t * ) E K. Since Y*, X*, p. have

(1) Here and in the sequel by point on a curve we mean a point on the nonsin-
gular model of it.

(2) This result goes back to Hurwitz.
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bounded height, both (Y* + and U have bounded height too,
whence our original equation has solutions whose height may be explic-
itly bounded, proving the above contention.

Having possibly found such a K-rational point P we may take (after
Coates algorithm) a nonconstant function t in V( -- P). Then the function
field K( C) equals K( t ) and we may effectively write any given function
f E K(C) in the form a(t), a e K(t).

PROOF OF THEOREM. We first show, by means of a familiar trick
that, if K ~ K, then S is fmite and computable.

Let z be a primitive element for 2: over K(X) of the form z cl y, +
+ ... + (where ci E K * and the yi are the roots off(X, Y) = 0) and
let H(X, Z) = 0 be a minimal equation over K(X), irreducible over
K[XI. Since the conjugates of z over K(X) are linear forms in yl , ... , yd*
with coefficients in K, we see that, if m e ,Sf then H(m, Z) splits into
linear factors over K. Now it is well known that K ~ K if and only if
H(X, Z) is not absolutely irreducible. Assume this is the case, let

L(X, Z) be an absolutely irreducible factor with algebraic coefficients,
and write

where the ti are algebraic numbers linearly independent over K while
Li E K[X, Z] for all i.

If the Li have a common factor Q, this divides L, whence L = gQ for
some algebraic number g. Also, we may clearly assume Q E K[X, Z],
so, since Q divides H, which is irreducible over K, we would have H =
= vL for some algebraic number v and H would be absolutely irre-
ducible.

So the polynomials Li are coprime, whence an equation

where Bi e K[X, Z] for all i while C is a nonzero polynomial with coeffi-
cients in K.

Now, if m E K and the equation L(m, Z) = 0 has a solution ~ E K,
then, in view of (1) and the independence of the ti over K we have
Li (m, ~) = 0 for all i, so, from (2), C(m) = 0. Since C is computable the
proof of the above contention is completed, i.e. we may assume that K
is algebraically closed in ~.

According to the remarks before the proof, either 2: has no rational
nonsingular points, whence S is finite and computable (as a subset of
the singular set of the plane curve determined by the minimal polyno-
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mial for a primitive element z as above), or we may compute a

parametrization

where 2: = K(t).
Also, there are parametrizations y2 = bi ( t ), where bi E K( t ), i =

= 1, ... , d *. Since K(X, yl , ... , yd* ) = 1: = K(t), we have a relation

where R is a rational function in its arguments with coefficients in K. In
particular this shows that if the values of X and the yi are defined at to,
then they all lie in K if and only if to E K.

If the rational function a has at least three distinct poles then, as ex-
plained in [6], Ch. 8, § 5, values of t in K such that X E D lead to a finite
number of (computable) Thue equations to be solved in D, so, by Bak-
er’s results (see [1], Ch. 4, Thm. 4.1), there are finitely many solutions
which can be found.

So, assume that a has at most two distinct poles.
The Galois group G has clearly a realization as a finite group of lin-

’ 

ear fractional transformations on t. (The structure of such groups is
well known: G may be either cyclic, dihedral or one of three sporadic
groups. See [2] for details.) Moreover the action of G leaves the rational
function a fixed and permutes the bi so we see from (4) that the coeffi-
cients of such tranformations may be assumed to lie in K.

Now, if a E G and 7r E C U 00 is a pole of a, we have is a pole
of a, whence the orbit of 7r under the action of G contains one or two
elements.

Suppose first X has only one pole, corresponding to t = 7r. Then 7r is
certainly in K U oo, so, replacing eventually t with n + we may as-
sume that 7r = 00. In particular a( t ) in (12) is a polynomial. Also, G sta-
bilizes 00 and thus consists of tranformations of type pt + 9. This im-
plies that G is cyclic (the map pt + ~ - p is an isomorphism of G onto a
finite subgroup of K *). Finally it is easily seen that, after a suitable
K-translation on t, we may assume that G is generated by a transfor-
mation t - Ct, where C E K. Necessarily C is a primitive d-th root of 1.

The degree of the polynomial a(t) is, by (3), the degree of t over
K(X), which equals d by definition. On the other hand a is invariant un-
der the action of G so, by the above, a E K[td ] whence

where a, b E K.
Now we see that m E S if and only if m = ar d+ b for a suitable
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T E K. It remains so to classify the -r E K such that + b E D. It is
clear that the denominator of z must be bounded, so we reduce to let z
vary over finitely many sets of the where ~ are fixed com-
putable elements of K and IA runs over D. Further + b E D if and

only if g lies in certain congruence classes modulo a certain ideal J of D
depending on a, b, ~. In conclusion S is the union of a finite set with
finitely many sets of the form

for computable a i E K, Y i E D and ideals Ji c D.
Suppose now that X has precisely two distinct poles corresponding

to t = 7r1 and t = ~c2. Observe that 7~1, ~2 either lie both in K U 00 or are

conjugate numbers in a quadratic extension. Put K’ = Consider
the transformation

We may use = u, say, as a variable in place of t. In terms of this
variable we have

and now the poles of X correspond to u = 0, 00 while G is replaced by
G * = as a group of linear fractional transformations on u.

Since the action of the Galois group is transitive on the places above
a given one, some element of G * (necessarily of the form u --* b/u) per-
mutes the places u = 0 and u = 00, so the stabilizer of 00 in G * has in-
dex 2. It follows also that G is dihedral of order d = 2d’ and that

for some b E K’. In particular K’ contains a primitive d’-th root of 1,
say "1’). (From the above formula for r it follows also that, if K’ ~ K, then
the nontrivial automorphism of K’ over K acts as complex conjugation
on "1’).) -

We have

for some polynomial satisfying f(O) = 0 and d = deg f &#x3E; m.
Also, since a * is invariant under the action of G * we obtain that
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, whence

where the f lie in K’. Actually, since a E K(t) and n1 and 7t2 either lie in
K or are conjugate quadratic, one obtains from (6) and (8) that in fact
fo E K, while f1 and f_ 1, if not in K, are conjugate in K’.

From (8) it follows that, if u e K’ is such that X = a * (u) is an alge-
braic integer, then the fractional ideal generated by u in D ’, the ring of
integers of K’, has finitely many computable possibilities, so

where a runs through a finite computable set and v is a unit in D’.
Starting from (9), the necessary and sufficient condition for (8) to be

an algebraic integer amounts to a congruence condition on v which, in
view of Dirichlet’s Theorem, is satisfied for all v in suitable cosets of
the full unit group modulo a subgroup V of finite index whose genera-
tors may be computed. So X E D’ iff

where B runs through a finite computable set while w E V.
We have still to exploit the condition X E K, in case K’ ~ K. This is

equivalent to t E K which, by the above formulas amounts to uic = 1
where the tilde denotes conjugation in K’ over K. From (10) we thus
get

This is satisfied precisely when w lies in a certain set (possibly emp-
ty) of cosets of V modulo its subgroup W consisting of elements whose
relative norm to K is 1. (We remark that one may find generators for
W.)

Finally we have that Z e D if and only if

where y lies in a finite computable set while z E W.

REMARK. It follows from the proof that the set Sf, x, differs by a fi-
nite set from a set of the form Sg,K’ where either g(X, Y) _ «Yd + p + X
and K’ = K or g(X, Y) = aY2d + + y)Yd’ + ~ and [K’ : K]  2.
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